Tag Archives: internal combustion engine

Over Half Canadians Opposed To Fed’s Unaffordable 2035 Ban On Gas Powered Cars

Over Half of Canadians Oppose Fed’s Plan to Ban Sale of Conventional Vehicles by 2035: Poll
An electric vehicle is seen being charged in Ottawa on on July 13, 2022. The Canadian Press/Sean Kilpatrick

More than half of Canadians DO NOT support the federal government’s mandate to require all new cars sold in Canada to be electric by 2035, a recent Ipsos poll finds.

Canadians across the country are “a lot more hesitant to ban conventional cars than their elected representatives in Ottawa are,” said Krystle Wittevrongel, research director at the Montreal Economic Institute (MEI), in a news release on Oct. 3.

“They have legitimate concerns, most notably with the cost of those cars, and federal and provincial politicians should take note.”

The online poll, conducted by Ipsos on behalf of the MEI, surveyed 1,190 Canadians aged 18 and over between Sept. 18 and 22. Among the participants overall, 55 percent said they disagree with Ottawa’s decision to ban the sale of conventional vehicles by 2035 and mandate all new cars be electric or zero-emissions.

“In every region surveyed, a larger number of respondents were against the ban than in favour of it,” MEI said in the news release. According to the poll, the proportion of those against the ban was noticeably higher in Western Canada, at 63 percent, followed by the Atlantic provinces at 58 percent. In Ontario, 51 percent were against, and in Quebec, 48 percent were against.

In all, only 40 percent nationwide agreed with the federal mandate.

‘Lukewarm Attitude’

Just 1 in 10 Canadians own an electric vehicle (EV), the poll said. Among those who don’t, less than one-quarter (24 percent) said their next car would be electric.

Fewer Canadians Willing to Buy Electric Vehicles: Federal Research

ANALYSIS: ‘Bumpy Road’ Ahead as Canada Moves Toward 2035 EV Goals

A research report released by Natural Resources Canada (NRCan) in March this year suggests a trend similar to that of the Ipsos poll’s findings. The report indicated that only 36 percent of Canadians had considered buying an EV in 2024—down from 51 percent in 2022.

“Survey results reveal that Canadians hold mixed views on ZEVs [Zero-Emission Vehicles] and continue to have a general lack of knowledge about these vehicles,” said the report by EKOS Research Associate, which was commissioned by NRCan to conduct the online survey of 3,459 Canadians from Jan. 17 to Feb. 7.

The MEI cited a number of key reasons for “this lukewarm attitude” in adopting EVs, including high cost (70 percent), lack of charging infrastructure (66 percent), and reduced performance in Canada’s cold climate (64 percent).

Canada’s shift from gas-powered vehicles to EVs is guided by federal and provincial policies aimed at zero-emission transportation. The federal mandate requires all new light-duty vehicles, which include passenger cars, SUVs, and light trucks, sold by 2035 to be zero-emission—with interim targets of 20 percent by 2026 and 60 percent by 2030.

Some provincial policies, such as those in Quebec, are even stricter, including a planned ban on all gas-powered vehicles and used gas engines by 2035.

‘Unrealistic’

The MEI survey indicated that two-thirds of respondents (66 percent) said the mandate’s timeline is “unrealistic,” with only 26 percent saying Ottawa’s plan is realistic.

In addition, 76 percent of Canadians say the federal government’s environmental impact assessment process used for energy projects takes too long, with only 9 percent taking the opposite view, according to the survey.

A study by the Fraser Institute in March said that achieving Ottawa’s EV goal could increase Canada’s demand for electricity by 15.3 percent and require the equivalent of 10 new mega hydro dams or 13 large natural gas plants to be built within the next 11 years.

“For context, once Canada’s vehicle fleet is fully electric, it will require 10 new mega hydro dams (capable of producing 1,100 megawatts) nationwide, which is the size of British Columbia’s new Site C dam. It took approximately 10 years to plan and pass environmental regulations, and an additional decade to build. To date, Site C is expected to cost $16 billion,” said the think tank in a March 14 news release.

On April 25, Prime Minister Justin Trudeau announced that Canada since 2020 has attracted more than $46 billion cad in investments for projects to manufacture EVs and EV batteries and battery components. A Parliamentary Budget Officer report published July 18 said Ottawa and the provinces have jointly promised $52.5 billion cad in government support from Oct. 8, 2020, to April 25, 2024, which included tax credits, production subsidies, and capital investment for construction and other support.

On July 26, a company slated to build a major rechargeable battery manufacturing plant in Ontario announced that it would halt the project due to declining demand for EVs.

In a news release at the time, Umicore Rechargeable Battery Materials Canada Inc. said it was taking “immediate action” to address a “recent significant slowdown in short- and medium-term EV growth projections affecting its activities.”

For The Silo, Isaac Teo with contribution from the Canadian Press.

Isaac Teo

Porsche Commit Long Term To Gasoline Engines

Change of Plans

There was a time, not terribly long ago, when it seemed like the automotive industry was on the fast track to total electrification.

Ahead of Their Time

Many of us think of hybrid or all-electric power as a relatively new technology. After all, Porsche just introduced its very first production EV, the Taycan. But in reality, electricity has been around in the automotive world for over a century. And Ferdinand Porsche was one of very first pioneers to embrace this technology. When Porsche was a teenager back in 1893, he installed an electric lighting system in his parents’ house. Even the very first vehicles he designed had electric drives. After toying around with a few different ideas, Porsche designed the world’s first functional hybrid car, the Semper Vivus (Latin for “always alive”), in 1900. But due to its modest power output, heavyweight, and lack of infrastructure, the idea was relegated to the back burner for many years. 

Amid concerns over global warming, governments around the globe began floating regulations that sought to ban ICE vehicles outright – but in recent months, with demand falling behind expected levels of growth, a lot has changed, and now, those same plans are being scaled back.

Up To and Beyond

While Porsche recently revealed that it continues to develop the all-electric version of its Cayenne crossover, it also plans to continue to offer hybrid and combustion engine-powered examples of that same model – “up to and beyond 2030,” in fact.

Keeping the V8

Interestingly, Porsche also noted that the currently, third generation of the Cayenne will be upgraded and will continue to be offered alongside the fourth, all-electric generation model. Engineers will focus on the Cayenne’s ICE powertrains, however, including its twin-turbocharged V8, which it will need to tweak to ensure that it meets increasingly stringent emissions standards.

Still Focused

This is obviously great news for fans of ICE powertrains and the V8 in general, but also note that Porsche remains focused on an electrified future, regardless. “Our product strategy could enable us to deliver more than 80 percent of our new cars fully electrified in 2030 – depending on the demand of our customers and the development of electromobility in the regions of the world.” Oliver Blume CEO Porsche AG.

As such, Porsche plans to continue making gas engines for some time, it seems. 

This 1980s Tech Can Keep Gas Powered Cars Relevant In EV Age

Read enough automotive-related articles on the internet and you will be convinced the internal-combustion engine is being hunted with a fervor typically reserved for villains in Jason Statham movies.

Okay, that conclusion may be extreme—but it holds some truth. Regulations regarding emissions and engine efficiency grow stricter with each passing year and manufacturers are faced with an impossible task: Take a centuries-old design and make it endlessly better—faster, cleaner, stronger, ad infinitum. At some point, progress will plateau, and the cost of ICE experimentation will simply outweigh the incremental gains in efficiency and power. The good news? The internal-combustion engine might have one more trick up its cylinder sleeve.

Fuel, air, and spark—the three things an engine needs to run. Air is one ingredient that it makes sense to leave alone. Fuel type is essentially decided by contemporary infrastructure. (Synthetic fuels are in the works, but we’re thinking of large-scale changes in the ICE design that would extend far beyond the top echelons of motorsport to the everyman (and woman) on the street.) That leaves spark as the low-hanging fruit in this equation. If a different type of ignition could more completely burn the fuel and air mixture, it would not only reduce emissions but also increase efficiency.

Enter plasma ignition.

This is what plasma looks like compared to the sharp spark of a traditional ignition system. Transient Plasma Systems, Inc

Traditional spark ignition is very simple.

A coil transforms the 12 volts from the car’s charging system into thousands of volts that discharge quickly to jump between the electrode and the ground strap of a spark plug. This forms a sharp but small zap that lights off the chemical chain-reaction that expands the air and fuel mixture to push the piston down and thus rotate the crankshaft. In order for the fuel-and-air mixture to be lit by this type of ignition system, it needs to be fairly close to a stoichiometric mixture; right around 14.7 to 1. That ratio—14.7 grams of air to one gram of fuel—puts a ceiling on efficiency. But here’s where things get interesting.

If we were able to lean out the mixture by adding air but still getting the same in-chamber expansion, and the corresponding force exerted on the piston, efficiency would increase dramatically. A lean mixture is much harder to ignite, though. So hard that you’d need transient plasma to make it happen in any reliable fashion. Technically, the spark on a standard spark plug does create plasma when it ionizes the gasses between the electrode and ground strap; transient plasma takes that small arc and dials it up to 11. If a spark plug is a zap in the chamber, plasma ignition is a TIG welder mounted in a cylinder head.

difference between spark ignition and plasma
Ionfire Ignition

This much more violent mode of ignition can regularly and predictably ignite extremely lean air/fuel mixtures. One of transient plasma’s most obvious advantages, besides a higher-efficiency combustion cycle, is that relatively low amounts of energy are used to perform a lot of electronic “work.” (The difference between energy and power, for those of you who enjoy recalling high school chemistry class.) The spark itself is not lighting a fire to burn the fuel; rather, a rapid-fire sequence of low-range electronic pulses generates a highly potent electric arc, which then breaks the bonds holding the oxygen molecules together and allows the electrons to shoot out, essentially attacking the hydrocarbons (fuel) and creating combustion. This means we are not waiting on a flame to consume the fuel and, in the amount of time between combustion and exhaust strokes, we get a more complete burn.

The most fascinating part? This technology is not new.

We traced the basic concept to patents from the 1980s, but technology has obviously come a long way since then. Outfits like Transient Plasma Systems, Inc. and Ionfire Ignition are reviving the concept and the reintroduction is timed quite nicely. (If you’ll forgive the pun.) TPS ignition systems have been tested and show a 20 percent increase in efficiency while also decreasing harmful emissions like NOx by 50 percent. Numbers like that aren’t a silver bullet in the ICE gun, but plasma ignition could keep our beloved internal combustion engines on the road longer than we’d expected. TPS claims it is working with manufacturers to integrate its ignition tech into production engines, but we are still a few years away from seeing the fruit of that collaboration.

The internal-combustion engine has undergone constant evolution for centuries, and at this point we’re extracting incremental gains. Plasma ignition could be one of the last significant improvements to be found in the ICE story. Here’s hoping that this ’80s tech, refined for the 21st century’s needs, makes its way onto the streets. For the Silo, Kyle Smith /Hagerty.

How To Reboot Ottawa’s Zero Emission Vehicle Mandate

The federal government has proposed regulations requiring the sale of a minimum numbers of Zero Emission Vehicles (ZEVs) in Canada (20 percent of all light vehicles in 2026, ramping up to 60 percent in 2030 and 100 percent in 2035). The flip side of this requirement is that the sale of internal combustion engine (ICE) light vehicles will be reduced and eventually prohibited in 2035.

  • This ZEV mandate will require an increase in ZEV sales from about 100,000 ZEV light vehicles in 2022 to 300,000 in 2026, 900,000 in 2030 and 1.5 million in 2035.
  • This paper examines whether or not Canadians will be able to buy enough ZEVs (either domestically produced or imported) to meet this ZEV mandate requirement. The findings show that Canada should be able to meet the 2035 100 percent ZEV mandate for about 270,000 passenger cars (only 18 percent of the market) but will be unlikely to meet the 2035 ZEV mandate for the 1,240,000 remaining light vehicles (pickup trucks, vans and SUVs/crossovers) comprising 82 percent of the market.
  • Canada cannot wait until 2035 to realize that the federal ZEV mandate will not be met. The gap between light-vehicle demand and forecasted ZEV light-vehicle supply will cause severe market disruptions. A better approach would be to reject a hardline ZEV mandate and instead to substitute a more flexible Plan B. Plan B should focus more on emissions rather than ZEV targets. For example, permitting some ICE light vehicles to be sold, particularly ones that can use renewable fuels. In addition, permitting plug-in hybrids (PHEVs) and hybrids to be included as ZEVs.
  • Finally, the federal government may have to accept that the 100 percent ZEV target is not feasible by 2035, and therefore must include flexibility in the federal ZEV mandate to back away from the 100 percent ZEV target.

A ZEV mandate is government legislation that imposes a requirement on the sellers of light vehicles to sell a certain minimum of ZEVs in a year. (ZEV is used interchangeably with BEV for battery electric vehicle in this paper. PHEVs can also qualify as ZEVs to a limited extent). The theory is that this minimum requirement will give certainty to vehicle sellers that there will be a market for ZEVs, and will therefore give an incentive to companies to construct ZEV manufacturing facilities. In essence, the ZEV mandate assumes that the demand for ZEVs will be there and will displace the demand for ICE light vehicles, and therefore the increase in supply of ZEVs will occur.

The federal government has introduced a ZEV mandate for all of Canada. In December 2022, the federal government issued proposed regulations under the Canadian Environmental Protection Act (CEPA). Section 30.3 of these proposed regulations state that all sales of light vehicles (passenger cars, pickup trucks, vans and SUVs/crossovers) must meet the thresholds for ZEV sales in a year shown in the table to the right.

Minimum Percentage of ZEV sales

The flip side to a ZEV mandate is that it imposes a prohibition on the sale of ICE vehicles, plus a penalty for contravening this prohibition. A company selling light vehicles in effect has an ever-shrinking quota for the maximum number of ICE light vehicles that it can sell in a year (none in 2035).

A company creates one credit for each battery electric vehicle (BEV) it sells. A sale of a PHEV with a range of more than 80 kilometres can also create a credit, but this ability is capped at 20 percent from 2028 onward. For example, a company selling 100 percent PHEVs in 2028 would only get credits for 20 percent.

If a company’s sales create fewer credits than required by the ZEV mandate, it can still remain in compliance by using two mechanisms. First, it can buy credits from another ZEV company that has exceeded its ZEV mandate. This mechanism will likely provide hundreds of millions of dollars of extra revenue to companies such as Tesla. An alternative second mechanism would allow the company to create a credit by contributing about $20,000 to specified ZEV activities such as supporting charging infrastructure. This second mechanism is capped at 10 percent of the ZEV mandate for the particular year, and is only available for the years prior to 2031.

For the Silo, Brian Livingston/The C.D. Howe Institute.

The author thanks Benjamin Dachis, Daniel Schwanen, Dave Collyer and anonymous reviewers for comments on an earlier draft. The author retains responsibility for any errors and the views expressed.

Our Horse Powered Past And The Mother Of Current Auto Tech

Where did auto tech start? A horse and buggy. Excellent horse-power huh? People got tired of the nurturing it took to take care of a work horse. People wanted more and as with anything the need for something better fuels the spark for innovation. How about something to do work, but doesn’t need rest? Doesn’t need medication? Doesn’t need someone to shovel up its crap? Take this formula and you get the steam engine, not a crazy engine, but an engine none-the-less. Suddenly the glowing aura of potential is perceivable, right on the horizon. Now we can have multiple horse-power without the care. Still needed someone to shovel though.

Enter, the mother of current automotive technology today, the oil industry. Instead of burning coal, why not find some ways to refine oil to be used as fuel sources to run things on? Who knows, we could have been running advanced versions of steam engines today? (They actually can be made to be fairly efficient and clean using current technology.) Silo Direct Link to the 1918 Stanley 735B Steam Car

Then the internal combustion engine enters the scene the oil companies love this, and a mass marketed engine that is completely dependent on oil is born. Just think, this is awesome for business, these engines need oil for fuel and lubrication. Then all the different designs start flowing. (Off the top of my head and in no chronological order) The single cylinder, then 2, then 4, then 6, then the flathead V8. Now this is where we start to see major horse-power and design improvements. The trusty ol’ inline 6’s, the small block eating slant 6’s,The overhead valve V engine, big blocks, small blocks, hemi’s. There are pancake engines, W engines, rotary engines, v-tecs, and many, many more. (Not to mention all of the different fuel delivery systems!)

The cylinder and valves and crankshaft of the Internal Combustion Engine

The one thing that really makes me scratch my head is the fact that we are just in the last few years getting hybrids, smart-cars, electric cars, and hydrogen cars that are actually worth looking at and driving. I mean, why is it that I can take a full size 2008 Chevrolet Silverado with a 5.3 L vortec engine, put: a cold air intake, a magnaflow exhaust system, and a good edge products programmer, and I can get an average of over 36miles per gallon, with the same horse-power? Why is it that I (not being an automotive engineer) can do this, but you can’t just buy one with those numbers from the manufacturer?
Not to mention brown-gas converters that have been tested on most common engine types that can take, mineral water, and a reaction from current between two electrified plates (similar to a car battery) and create a safe amount of hydrogen gas as a by-product which can make your car run the same on half the amount of fuel. The thing that boggles me is that most people have never even heard of these. You can buy the plans off the internet (not as complicated as it sounds) or I can even get ready to install ones from my performance part supplier. I just find it strange that automotive technology and fuel sources have taken this long to start to veer just slightly away from oil (or as ‘ol Jed calls it “Texas tea”).

At one point we bridged the gap from a horse and buggy to a steam engine, and then to internal combustion. With the technology we have now, we should have much higher mpg’s and horse-power or an extremely viable alternative. It really makes me wonder where we might be now if this technology was steered in a different direction from the start. It’s now been almost 100 years now of improving the same technology using more or less the same fuel source. There are guys in the states who run their own garage refined deep fryer grease to power their small pickups and VW buses. There are guys who run pickups off wood-fire smoke. Just something to think about.  For the Silo, Robb Price.